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Dear Inés P. Mariño,

Re: Submission to PLOS One

Please find attached a substantially revised version of our manuscript “An automatic adaptive method
to combine summary statistics in approximate Bayesian computation”. This work has previously been
reviewed with the following manuscript ID: PONE-D-20-06109. As suggested by the editor, we have
revised our manuscript to fully address all the criticisms made by the reviewers and hope that it is now
suitable for publication in PLOS One.

In this work, we develop an adaptive algorithm to combine summary statistics for approximate Bayesian
computation (ABC), a methodology frequently used in interdisciplinary settings to calibrate mechanistic
models to experimental data. The choice of summary statistics to summarize the data greatly affects
the resulting parameter estimation via ABC. Some summary statistics contain more information for pa-
rameter inference than others, and it is not immediately clear how to combine these. We address this
problem by adaptively selecting weights within the ABC distance function in order to maximize the dis-
tance between the prior and the approximate posterior. We justify theoretically the proposed algorithm
based on properties of a nearest neighbour estimator for the distance between prior and posterior. We
demonstrate the performance of this technique via application to several biochemical reaction systems,
and compare to other commonly used methods based on dimensionality reduction of summary statistics.

The research that we have carried out is at the forefront of computational statistics, and will enable
further multi-disciplinary research in a range of application areas. This form of method development is
required to improve the application of ABC to high dimensional datasets. Applying this new methodology
will facilitate parameter estimation via ABC techniques for mechanistic biological models where the
dimensionality of the data may previously have prohibited this. We believe that the results that we report
in this article will have wide reaching impact on the broad range of communities applying ABC in practice.

We would like to place on record our thanks to all the referees for taking the time to carefully consider
our manuscript and the editor for handling it. In the following pages, we provide a detailed account of
the changes we have made to the manuscript to address the reviewers’ comments, and we hope that it
is now suitable for publication in PLOS One.

Please do not hesitate to get in touch if you have any queries.

Yours sincerely,

Jonathan Harrison
University of Warwick
(Corresponding Author)

mail: jonathan.u.harrison@warwick.ac.uk



Response to Referee 1

We would like to thank Referee 1 for taking the time to consider our manuscript, and provide constructive
comments for its improvement.

The methods does not apply when priors are improper priors. Although this is not usual in ABC, in the
end we don’t know what happen if priors are very spread out on the support of parameter space. For
instance, would this imply uniform weights?

In the case of improper priors, the Hellinger distance from prior to approximate posterior is infinite irre-
spective of the choice of weights. The method of Algorithm 2 cannot be applied in this case. We would
instead recommend using a weakly informative prior distribution (see Gelman et al. [2014]) that contains
enough information to regularise the posterior distribution without capturing full scientific consensus
knowledge about a parameter.

The case of proper priors that are very spread out has been considered in this work. For the uniform
toy model, the dimerization system and the simple spatial model in Sections 4.1, 4.3 and 4.4, we used
priors uniform on the logarithm of the parameters θ, which is a diffuse non-informative choice of prior
distribution. Provided the Hellinger distance from prior to approximate posterior is finite, and varies when
the ABC distance weights are adjusted such that a maximum can be found, then the method of Algorithm
2 should have the correct behaviour. There is no reason why uniform weights within the ABC distance
function should be optimal when the prior is very spread out.

To demonstrate this, we have added Section C and Figure S4 to the Appendix. In this Section, we
show, for a version of the Gaussian toy problem, that the adaptive method of Algorithm 2 is able to offer
an improved approximation to the true posterior compared to a uniform choice of weights in the ABC
distance function regardless of increasing variance in the prior distribution.

All comparison with the methods I think are misleading, in fact the obtained posteriors are compared
among them but not with the true posterior in the case when this is known by using analytical likelihood.
For example, in the case of Uniform or Normal example I would have drawn the true posterior instead of
the true value of the parameter which is just a point.

We thank the reviewer for highlighting this point. We have made comparison with the exact MCMC
approximation to the posterior based on the analytical likelihood for these cases. These are shown
as the dark purple curves labelled as MCMC. We have removed the label for the point value used to
simulate the dataset, and describe the dashed line indicating this point value in a caption only, which
should avoid confusion on this point. The captions now read: "For comparison as a gold standard for this
problem, the dark purple line shows the posterior obtained with MCMC using the exact likelihood without
any ABC approximation. The true parameter value used to simulate the observed data is indicated by
the vertical dashed black line."

Comparison should be done also in terms of computational effort at least in terms of the number of
simulated data from the model. For instance, the uniform assignment of weights maybe is not optimal,
but it is certainly less computational demanding.

To address this point raised by both reviewers, we have updated Section 4.5 and renamed this as
"Comparison of computational costs". In Section 4.5, we fix a computational budget, and compare a
situation where additional computational resources are allocated to optimization of the weights of the
ABC distance function for Algorithm 2, versus a situation where additional computational resources are
allocated to extra model simulations with uniform weights. In most cases of the models considered,
it was more beneficial to optimize the weights of the ABC distance function, rather than to allocate
resources to additional simulations. In addition, we have updated Section 4.5 such that we state the
following: "If our proposed approach of adapting the weights of each of the summary statistics is to be
used in practice, we must ensure that the increases in the quality of the resulting posterior justify the
computational overhead required for optimizing the weights of the ABC distance function. Otherwise, it
would be preferable simply to generate the posterior using ABC-SMC with more samples, but with fixed
summary statistic weights." We further describe the implementation of this comparison in the text: "For
each of the test problems described in Section 4, we compare a baseline scenario using ABC-SMC with
uniform weights, with a second scenario where optimization of summary statistic weights is performed
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as in Algorithm 2, with a third scenario such that an equivalent amount of additional computational effort
is devoted to further model simulations so that more particles can be used in ABC-SMC with uniform
summary statistic weights." Results evaluating the posterior approximations produced in each case are
compared in Table 1.

Page 3 lines 72-75 these could be rephrased.

We thank the reviewer for this suggestion, and have rephrased these lines to read: “Fearnhead and
Prangle [13] developed a popular method to find informative linear combinations of summary statistics
by fitting a regression for each model parameter.”

Response to Referee 2

We would like to express our gratitude to Referee 2 for taking the time to consider our manuscript, and
provide constructive comments for its improvement.

It would be very interesting if the authors clarify (in the introduction of Section 1.2 with a clear remark)
what is the difference in choosing a distance and a summary statistics in ABC, or directly assume an
approximation of the likelihood function (and then use standard inference computational methods). To be
more clear: if in your algorithm 1 (or just an ABC-rejection method) you use a soft condition considering
for instance a weighting function exp(−d(s(x), s(y))) (instead of an hard condition as you have in line
10 of Algorithm 1), I believe that the ABC computational methods (ABC-SMC or ABC-rejection, etc.)
can be interpreted as standard computational techniques assuming a particular approximation of the
likelihood. Then, choosing the distance and summary statistic is equivalent to approximate your ‘costly’
and/or intractable likelihood function.

We thank the reviewer for suggesting this perspective, and have added the following to the introduction
in Section 1.1: "ABC can be viewed as providing a regular Bayesian analysis, but with an approximation
to the likelihood function of the form [Sisson et al., 2018]:

pABC(y|θ) =
∫
1 [d(x,y) ≤ ε] p(y|θ)dx, (1)

where pABC(y|θ) is the ABC approximation of the likelihood, and p(y|θ) is the exact likelihood. The quality
of the approximation depends on the choice of tolerance, ε, and distance function d(x,y)."

To further build on this interpretation, we now state at the end of Section 1.2: "Following the perspective
of ABC offering an approximation to the likelihood, as in eq. (1), we can consider how optimizing the
choice of ABC distance function, given a set of summary statistics, can improve the approximation to
the likelihood offered by ABC."

Another point to clarify: you have the distance d(., .) and the summary statistic s(x), but actually we need
to learn the combination of both d(s(x), s(y)). What you are ‘learning’? d(., .), s(x) or both (in the sense
of “both together ”)? I believe the last option. But it should be clarified in different part of the text (also in
the abstract and introduction).

We appreciate the opportunity to clarify this. We assume that a list of possible summary statistics is
available, which is a common assumption and broadly applicable given some domain expertise about
an application. Rather than selecting which of these summary statistics to include in the analysis, we
use all the summary statistics, and select a distance function, such that changes in irrelevant summary
statistics can be ignored, and informative statistics considered on equivalent scales. We are learning
only d(. . . ) and not s(x).

In the abstract, we state that in this work we are "developing an automatic, adaptive algorithm that
chooses weights for each summary statistic" and that we are "adapting the weights within the ABC
distance function". In the text in Section 1.2, we have now updated our wording to emphasise this as
follows: "In this work, we approach the problem from the point of view of finding the right distance func-
tion, adapted to information contained in a fixed list of known summary statistics, rather than selecting a
certain subset of summary statistics."

For instance, I believe that the method in M U Gutmann, R Dutta, S Kaski, and J Corander. Likelihood-
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free inference via classification. Statistics and Computing,8(2):411-425, 2018, is learning both together
of just the distance d(.,.)? please clarify also this point, discussing some connections to the other papers
in the literature.

We have added additional discussion and highlighted connections to other work in this area as follows:
"Other work has avoided using summary statistics at all by considering Wasserstein distance between
full data sets [Bernton et al., 2017, 2019] or by using classification techniques from machine learning to
discriminate between datasets [Gutmann et al., 2018], and thus choosing a classification method and
features rather than a distance function and summary statistics."

Related to the previous point: the first formula in Section 2 seems to show that you are only learning the
distance (or more specifically, the weights in a weighted Euclidean distance). Please clarify.

As discussed following the previous comment, in this work we are learning the distance and not the
summary statistics.

It is not clear why you choose the Hellinger distance. Is there some specific reason? Moreover it seems
that you use a more generic distance at page 6. Please clarify.

We thank the reviewer for raising the choice of distance function. Alternative choices of distance func-
tion could be used in a similar approach. We found that the Hellinger distance was more robust to
distributions with different support than other distances such as the Kullback-Leiber (KL) divergence. In
the text we address this issue as follows: "The Hellinger distance is finite when comparing distributions
with different support (unlike the KL divergence). This property is desirable when comparing a broad
prior with a posterior distribution where we have gained some knowledge of parameter space and can
exclude certain regions."

The nearest neighbour estimator described on page 6 is valid for a wider class of α-divergences, Dα,
than the Hellinger distance and we describe the methods in this context. Equation (2) on page 6 is given
for this more general case of α-divergences, Dα, rather than specifically for the Hellinger distance. This
offers consistency with notation in previous literature.

Regarding the state-of-the-art in the introduction: it is quite poor. In order to improve the quality of the
paper and its impact, I suggest to extend the state-of-the-art discussion including also references to
noisy Monte Carlo methods and other computational methods for intractable likelihood.

We have significantly extended the discussion of the state-of-the-art in the introduction in Section 1
beyond ABC methods and have included references to noisy Monte Carlo and other intractable likelihood
techniques.

Can you say more regarding the adaptation of the tolerance in Algorithm 2? this is quite important since
the distance and the tolerance plays an complementary role in your hard condition at line 19 of Algorithm
2. How robust is your algorithm with respect to a change of the adaptation of the tolerance? can you
show some results keeping fixed the tolerance?

One of the main benefits of using the quantile α of the distribution of distances to help set the tolerance
schedule is that it avoids needing to consider directly the scale of typical distances between observed
and simulated data. When optimizing the distance function, we cannot be sure what the scale of typical
distances between observed and simulated data will be, as these depend of the summary statistic
weights. This makes it harder to determine a fixed schedule of tolerances in advance.

Nonetheless, we have added Section D in the Appendix and Figure S5, where we provide results with
a fixed tolerance schedule determined in advance, and thus demonstrate robustness to changes in
the adaption of the tolerance. In the text though, we stress that "we recommend using a tolerance
determined as a quantile of the distance distribution, as this avoids the need to set a fixed tolerance
schedule in advance when the scale of typical distances between observed and simulated data is not
known in advance. A fixed tolerance scheme prevents fair comparison between uniform, scaled and
adaptive weighting methods for the weights of the ABC distance function, as different numbers of model
simulations are required in each case dependent on the tolerance schedule. By using the quantile α
of the distribution of distances, we ensure that an equal number of model simulations are used in each
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case. Methods to design tolerance schedules have been investigated by Silk et al. [2013] based on a
threshold-acceptance rate curve and could be considered as an alternative."

Your algorithm 2 has the additional computational cost of optimizing your weights. You should compare
with a standard ABC algorithm without optimization but with extra- samples (i.e., with more samples than
your method) in order to have a fair comparison with your method.

We thank the reviewer for also raising the issue of computational cost. We now perform this comparison
in Section 4.5 and have made significant updates to this Section, including renaming it as "Comparison
of computational costs" for additional clarity. Further details are described above in the response to
Referee 1.
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